College of Engineering Department of Civil Engineering

CE 509 Biological Treatment Processes

Credit and Contact hours	3 / 3 (Lectures), 0 (Tutorials), 0 (Laboratory)		
Required, or Elective	Required		
Course Description	Kinetics of biological growth. Modeling of suspended and attached growths. Aerobic treatment processes: Trickling filters, rotating biological contactors, activated sludge, Aerated lagoons and stabilization ponds. Sludge treatment.		
Prerequisites or Co- requisites	None		
Course Learning Outcomes	Students completing this course successfully will be able to:		
	Course Learning Outcomes (CLOs)	Related Student Outcomes (SO)	
	CLO1. Recognize fundamental and advanced concepts of microbiology in biological treatment processes of wastewater. K1	SO1	
	CLO2. Recognize the practical design, operation and monitoring of biological wastewater treatment systems. K1	SO1	
	CLO3. Apply fundamental and advanced concepts of microbiology in real-life biological treatment processes of wastewater projects. S1	SO2	
	CLO4. Determine and analyze the quantity and quality characteristics of wastewater. S2	SO3	
	CLO5. Design and compute the dimensions of biological treatment units in real- life projects. S4	SO 5	
	CLO6. Apply professional engineering ethics and academic integrity in the design, critical assessment, and research of various wastewater treatment systems, specifically those performing biological removal of organic matter, nitrogen, and phosphorus. V1	SO6	
Student	SO 1 Recognize advanced engineering knowledge, concepts, and techniques to identify, interpret, and analyze complex and real-life engineering problems.		
	SO 2 Provide solutions for complex and real-life engineering problems through critical thinking and the use of modern engineering tools, and identify their impact on social, global, cultural, environmental, safety, and economic factors.		
Outcomes related to	SO 3 Investigate scientific research problems independently or through teamwork using critical thinking, appropriate techniques, advanced tools, and management principles.		
this Course	SO 5 Design novel advanced Civil Engineering systems and evaluate their performance, sustainability, and effectiveness for engineering practice and their impact in global, economic, environmental, and societal contexts		
	SO 6 Demonstrate scientific integrity, ethical responsibility, and academic va publications, research projects, and thesis work.	alues in scientific	

	List of Topics		Related CLOs	
	1. Characterization and measurement of Organic Pollutant.		CLO 4	
Topics	2. Introduction to Biological Treatment.		CLO 1, 2, 3	
Covered	3. Microbial Growth Kinetics.		CLO 1, 3	
	4. Suspended Biological Treatment Systems.		CLO 5, 6	
	5. Attached Growth Biologica	l Treatment system.	CLO 5, 6	
Textbook(s)				
and Other	• Metcalf/Eddy: Wastewater Engineering: Treatment and Reuse, 4th edition,			
Required	McGraw Hill, Boston, MA.			
Material				
Grading System	Assignments	20%		
	Lecture Attendance			
	Technical Paper	20%		
	Mid-term exams	20 %		
	Final Exam	40 %		
Instructors	Prof. Anwar Khursheed Ahmad / Prof. Ashraf Refaat			
Date of Review	March 2025			